PhD Studentship in Responsive Mooring Systems for Floating Renewable Energy Facilities

University of Southampton School of Engineering

United Kingdom

PhD Studentship in Responsive Mooring Systems for Floating Renewable Energy Facilities

School of Engineering
Location: Highfield Campus
Closing Date: Monday 31 August 2020
Reference: 1228720DA
Supervisor: Susan Gourvenec

Co-supervisor Adam Sobey and Gabe Weymouth

Project background:

As renewable energy structures move into deeper water, the now established fixed foundation concepts must be replaced by anchoring systems. Current mooring systems are designed to resist peak design loads, which can lead to expensive mooring systems. This project will investigate the potential of a mooring system that absorbs some of the peak dynamic loading, such that smaller loads are transferred to the anchor, enabling smaller anchors that will be more cost effective and safe. Development of more efficient mooring systems is particularly important for the transition to renewable energy since the lower energy yield per structure compared to oil and gas producing structures requires many hundred more structures to be moored to the seabed for the same total energy yield.

Project hypothesis and scope:

The project hypothesis is that responsive mooring systems can provide a feasible option to reduce anchor size for floating facilities.

This project will involve investigation of the relationship between mooring line ductility and platform response through numerical analysis and experimental tank tests with high speed image capture and analysis. The University of Southampton has a large (138 m long) hydrodynamic testing tank equipped with digital image correlation capabilities, materials testing laboratory including high strain rate testing facilities and one of the largest supercomputer facilities in the country.

Maritime Engineering at UoS is co-located with Lloyd’s Register’s Marine division on the Boldrewood Innovation Campus providing the opportunity for this project to include development of design guidance for the adoption of responsive mooring systems.

The outcome of this project will be development of an effective responsive mooring system and design methodology that reduces the size of anchor required for floating facilities.

This project forms part of, and is funded by, a Royal Academy of Engineering Chair of Emerging Technologies in Intelligent & Resilient Ocean Engineering.

Prerequisites and applicant skills:

A First Class Degree in an engineering or physical sciences discipline or applied mathematics

Experimental and numerical analysis capabilities would be beneficial.

If you wish to discuss any details of the project informally, please contact Susan Gourvenec, Infrastructure Research Group, Email: susan.gourvenec@southampton.ac.uk, Tel: +44 (0) 2380 599139.

Closing date: applications should be received no later than 31 August 2020 for standard admissions, but later applications may be considered depending on the funds remaining in place.

Funding: full tuition fees for EU/UK students plus for UK students, an enhanced stipend of £15,009 tax-free per annum for up to 3.5 years.

How To Apply

Applications should be made online here selecting “PhD Eng & Env (Full time)” as the programme. Please enter Susan Gourvenec under the proposed supervisor.

Applications should include:

Research Proposal

Curriculum Vitae

Two reference letters

Degree Transcripts to date

Apply online:

For further information please contact: feps-pgr-apply@soton.ac.uk

 


In your application, please refer to Polytechnicpositions.com

FACEBOOK
TWITTER
LINKEDIN

baner1

baner10

baner12

baner14

baner2

baner3

baner4

baner5

baner6

baner7

baner8

baner9